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Normal scaling in globally conserved interface-controlled coarsening of fractal clusters
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We find that globally conserved interface-controlled coarsening of diffusion-limited aggregates exhibits
dynamic scale invariance~DSI! and normal scaling. This is demonstrated by a numerical solution of the
Ginzburg–Landau equation with a global conservation law. The general sharp-interface limit of this equation
is introduced and reduced to volume preserving motion by mean curvature. A simple example of globally
conserved interface-controlled coarsening system: the sublimation/deposition dynamics of a solid and its vapor
in a small closed vessel, is presented in detail. The results of the numerical simulations show that the scaled
form of the correlation function has a power-law tail accommodating the fractal initial condition. The coars-
ening length exhibits normal dynamic scaling. A decrease of the cluster radius with time, predicted by DSI, is
observed. The difference between global and local conservation is discussed.
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Growth of order from disorder in systems with long-ran
correlations is an intriguing problem which appears in ph
ordering@1# and in many other applications. In phase ord
ing systems, long-range correlations appear most natu
when the system is quenched from the critical tempera
T5Tc to T50. Systems with long-range correlations are
ten characterizable by fractal geometry@2#, and a question
arises about the role of the fractal geometry in the coarse
dynamics. Therefore, a lot of attention in different fields
physics has been devoted to a variety of processes of ‘‘fra
coarsening’’@3–14#. A typical setting for fractal coarsenin
is the following. At an earlier stage of the dynamics a frac
cluster~FC! develops due to an instability of growth of th
‘‘minority phase.’’ Canonical examples are deposition of s
ute from a supersaturated solution, solidification from an
dercooled liquid and viscous fingering in the radial Hel
Shaw cell@2#. When the mass~or heat! source is depleted
fractal coarsening, that is coarsening of fractal clusters
surface tension, becomes dominant. Additional examples
pear in the context of sintering@4,7#, smoothing of fractal
polymer structure in the process of polymer collapse@12#,
thermal relaxation of rough grain boundaries@14#, etc. How
does the morphology of the FC change in the process
coarsening? Is there any dynamic scaling behavior, and w
are the universality classes?

A major simplifying assumption in an attempt to answ
these questions is dynamic scale invariance~DSI!. DSI im-
plies that there exists, at late times, a single coarsen
length scalel (t) so that the pair correlation functionC(r ,t)
has a self-similar formg@r / l (t)# @1#. Because of the com
plexity of coarsening systems, DSI has not been proven,
cept in some simple models@1#. For systems with short
range correlations, there is a lot of evidence supporting D
from experiments as well as from numerical simulations. T
situation is very different for systems with long-range cor
lations. Toyoki and Honda@3# were the first to apply the DS
hypothesis to such systems, considering systems with n
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conserved order parameter. Particle simulations of nonc
served phase ordering following a quench fromT5Tc to T
50 showed that in this case DSI holds, and that new univ
sality classes for the equal-time two point correlation fun
tion appear@15#. However, a large discrepancy between t
approximate theoretical correlation function and the num
cal one still remains unexplained. Implications of~mass!
conservation in fractal coarsening were considered more
cently @4,8#. Most remarkable of them is the predicted d
crease of the cluster radius with time. However, there
been no convincing evidence~neither in experiment, nor in
simulations! in favor of DSI in conserved fractal coarsenin
Moreover, anomalous scaling and breakdown of DSI w
observed in recent simulations of locally conserved ed
diffusion- @7# and bulk-diffusion-controlled@9,10# fractal
coarsening.~By definition, normal scaling follows from the
governing equations when one assumes DSI. Anoma
scaling may occur when DSI is broken.! We report here our
finding that DSI and normal scaling hold in the process
interface-controlledfractal coarsening with aglobally con-
served order parameter. This system is apparently the
realistic conserved fractal coarsening system where this s
plifying and beautiful concept is found to work.

As we show below, a simple example of globally co
served interface-controlled coarsening is provided by
sublimation/deposition dynamics of a solid and its vapor i
small closed vessel kept at a~constant! temperature below
the melting point @16#. Globally conserved interface
controlled coarsening also appears in the growth of so
particles undergoing a chemical reaction in which a gase
compound is formed@17#. Another example appears in th
context of attachment/detachment-controlled nanoscale fl
tuations at solid surfaces@18#, where it has been found pos
sible to single out the interface-controlled kinetics@19#.
There is also a strong empiric evidence in favor of interfa
controlled transport during the cluster coarsening in elec
statically driven granular flows@20#.

Globally conserved interface-controlled dynamics is a
related to a wide range of multiphase coarsening syste
Sire and Majumdar@21# showed that in the largeq limit the
©2001 The American Physical Society27-1
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AVNER PELEG, MASSIMO CONTI, AND BARUCH MEERSON PHYSICAL REVIEW E64 036127
dynamics of theq-state Potts model~see Ref.@1#! is equiva-
lent to globally conserved interface-controlled dynam
with an area fraction 1/q. This limit is of special importance
Indeed it is known that in the largeq limit the q-state Potts
model describes correctly some of the main characteristic
the coarsening of polycrystalline materials@22#, and of the
dynamics of dry soap froths@23#.

Here is an outline of the rest of the paper. We shall wo
with the Ginzburg-Landau equation with a global conser
tion law ~GCL!. The corresponding sharp-interface theory
introduced, and an experimental realization of the mode
presented in detail. At late times the general sharp-interf
theory is reducible to volume preserving motion by me
curvature. Assuming DSI, one can then predict scaling
havior of the correlation function, a decrease of the clus
radius with time and normal scaling of the coarsening len
l (t). Our extensive numerical simulations of the coarsen
of two-dimensional ~2D! diffusion-limited aggregates
~DLAs! support all these predictions. We shall conclude
pointing out the main difference between global and lo
conservation.

We adopt a Ginzburg-Landau free energy functional

F@u#5E @~1/2!~¹u!21V~u!1Hu#ddr , ~1!

where V(u)5(1/4)(12u2)2 is a double-well potential,
u(r ,t) is the order parameter and fluctuations are neglec
The effective ‘‘magnetic field’’H5H(t) changes in time so
as to impose the GCL:̂u&5const, wherê •••& denotes a
spatial average

^•••&5L2dE ~••• !ddr . ~2!

L is the system size and the integration is over the wh
system. The dynamics is described by a simple gradient
scent

]u

]t
52

dF

du
5¹2u1u2u32H~ t !. ~3!

Using Eq.~3! and the GCL, one getsH(t)5^u2u3& ~peri-
odic boundary conditions are assumed!. Therefore, Eq.~3! is
a nonlocal reaction-diffusion equation@24–27#. In the con-
text of phase ordering it can be called the Ginzburg–Lan
equation with a GCL. To make theoretical progress, o
should work in the sharp-interface limit valid at late time
when the system already consists of large domains of ‘‘ph
1’’ and ‘‘phase 2’’ divided by a thin interface@27#. At this
stageH(t) is both small,H(t)!1, and slowly varying in
time. The phase field in the phases 1 and 2 is uniform
rapidly adjusts to the current value ofH(t), so u521
2H(t)/2 and 12H(t)/2, respectively. For brevity, we wil
consider the 2D case. The normal velocity of the interfac
@27#

vn~s,t !5~3/A2!H~ t !2k~s,t !, ~4!
03612
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where s is the coordinate along the interface andk is the
local curvature of the interface. A positivevn corresponds to
the interface moving toward phase 2, whilek.0 when the
interface is convex towards phase 2.

An equation forH(t) follows from GCL @27#:

4A~ t !

L2
2H~ t !5const, ~5!

whereA(t)5*u(r ,t).0d2r is the cluster area. Equations~4!
and ~5! make a closed set and provide the sharp-interf
formulation to our problem.

Remarkably, this simple sharp-interface model is a go
approximation to the following physical process. Consid
the sublimation/deposition dynamics of a solid, e.g.,
amorphous ice, and its vapor in a small closed vessel kep
a constant temperature. As the acoustic time in the gas p
is short compared to the coarsening time, the gas pres
and density remain uniform in space, changing only in tim
This character of mass transport in the vapor phase ma
the coarsening dynamics conserved globally rather than
cally, which leads to different kinetics. We shall derive t
governing equations for the dynamics of this system in th
dimensions~3D!, and also give the results for 2D. The de
vation is based only on a few assumptions which are w
accepted at intermediate and late times of a coarsening
cess.

The net flux of molecules into the solid phase is given
the difference between the outward flux of solid molecu
into the vapor phaseJG and the inward flux of vapor mol-
eculesJv

Jnet5nsvn5JG2Jv , ~6!

wherens is the constant number density of the solid pha
Notice thatJG is equal to the~inward! flux of vapor mol-
ecules in equilibrium with a solid surface with mean curv
ture k. The flux of molecules of an ideal gasstriking a sur-
face is given by

J5nS kBT

2pmD 1/2

, ~7!

wheren is the density,kB is the Boltzmann constant,T is the
temperature, andm is the mass of one molecule. Combinin
Eqs.~6! and ~7! we obtain

Jnet5nsvn5aS kBT

2pmD 1/2

~nG2nv!, ~8!

where nv5nv(t) is the actual spatially uniform and time
dependent number density of the vapor phase, andnG is the
density of the vapor in equilibrium with a surface with me
curvaturek. The coefficienta obeying 0,a,1 accounts
for the fact that only a fraction of the impinging vapor mo
ecules indeed goes into the solid phase. The densitynG is
given by the Gibbs–Thomson relation

nG5n0~12lk!, ~9!
7-2
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NORMAL SCALING IN GLOBALLY CONSERVED . . . PHYSICAL REVIEW E64 036127
where n0 is the density of the vapor phase in equilibriu
with a flat interface of the solid,l is the capillary length, and
the mean curvaturek is the sum of the two local principa
curvatures. In writing Eq.~9! one assumes thatlk!1. The
minus sign in the last equation is due to our sign conven
for k: k.0 when the interface is convex towards the so
phase. Substituting Eq.~9! into Eq. ~8! and denotingDn
5nv2n0, we arrive at the following expression forvn :

vn52
aln0

ns
S kBT

2pmD 1/2Fk1
Dn

ln0
G . ~10!

Since the total number of molecules in the systemN0 is
constant, theglobal conservation law is given by

nsVs~ t !1nv~ t !@L32Vs~ t !#5N05const, ~11!

whereVs(t) is the total volume occupied by the solid pha
and L is the linear size of the vessel. Asnv(t)!ns , and
assuming that throughout the dynamicsVs(t)!L3, the third
term on the left hand side of Eq.~11! can be neglected. Thi
leads to

Vs~ t !

L3
1

Dn~ t !

ns
5const. ~12!

For a 2D systemvn is given by an equation similar to Eq
~10!, and the global conservation law takes the form

As~ t !

L2
1

Dn~ t !

ns
5const, ~13!

with As(t) the total area occupied by the solid phase. We
that Eqs.~10! and ~13! for the sublimation/deposition dy
namics are similar in form to the general globally conserv
sharp-interface Eqs.~4! and~5!, and these two models can b
mapped into each other exactly. Specifically, the role of
magnetic field in the general theory is played by the va
supersaturationDn in the sublimation/deposition dynamics

Possible additional examples of globally conserv
interface-controlled dynamics obeying Eqs.~10! and~13! are
provided by some chemical systems. Consider a solid
can undergo a chemical reaction with a gas in which a g
eous compound is formed. For example: Pt1O25PtO2,
where at sufficiently high temperatures PtO2 is a gas, and the
reaction takes place at the surface of the solid Pt. Using
same considerations as in the submimation/deposition
ample, we obtain exactly the same Eqs.~10! and ~13!, with
PtO2 playing the role of the vapor phase. In fact, Wynbl
and Gjostein considered such dynamics@17#, but without set-
ting the conservation law~that is, in an open vessel!, and
referring only to spherical particles.

Equations~4! and~5! of the general sharp-interface theo
can often be further simplified. Compute the cluster area
rate

Ȧ~ t !5 R vn~s,t !ds5L~ t !F 3

A2
H~ t !2k~s,t !G , ~14!
03612
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where the overbar stands for averaging over the interfac

k~s,t !5
1

L~ t ! R k~s,t !ds ~15!

andL(t) is the cluster perimeter. If the cluster area is co
served, thenH(t)5(A2/3)k(s,t) which yields

vn~s,t !5k~s,t !2k~s,t !. ~16!

This is area-preserving motion by curvature~in 2D!, or
volume-preserving motion by mean curvature~in 3D!
@25,27,28#. Dynamics~16! shortens the interface length~in
2D!, or area~in 3D! @25,28#. This nonlocal coarsening mode
is simpler than the better known ‘‘Laplacian coarseni
model’’ ~derivable from the Cahn–Hilliard equation@1,29#!
which describes the late-time asymptotics of the locally c
served, bulk-diffusion-controlled coarsening.

A single circular~in 2D! or spherical~in 3D! domain of
one of the phases in the ‘‘sea’’ of the other phase repres
the only stable two-phase steady state of model~16! not di-
rectly imposed by the system boundaries@25,27#. In this
work we investigate the relaxation dynamics which st
from complex initial conditions. As always in the phase o
dering theory, we are interested in a~very long! time range
when, on one hand, irrelevant details of the initial conditio
are forgotten but, on the other hand, the system is still v
far from the simple final state. It is this intermediate tim
range where one can expect dynamic scaling behavior@1#.
Assuming DSI, we can estimate the interface velocity asvn
;dl/dt. Each of the terms on the right side of Eq.~16! is of
order 1/l ~except for critical quench, when the first term a
erages to zero!. Equating and integrating yields the norm
scaling: l (t);t1/2. Therefore, GCL does not change the d
namic scaling. The same result~again, when assuming DSI!
follows from dynamic renormalization group arguments a
plied to Eq.~3! ~with a Gaussian white noise term! @30#. For
short-range correlations this result was supported by kin
Monte Carlo simulations of critical@31# and off-critical@21#
quench, and by a numerical solution of Eq.~3! for both criti-
cal, and off-critical quench@32#. For critical quench, the
coarsening morphology is that of interpenetrating doma
while for off-critical quench it is that of Ostwald ripening.

Let us return to fractal coarsening. The initial conditio
are FCs characterizable by fractal dimensionD on an interval
of scales between the lower and upper cutoffsl̃ 0 andL̃0. The
DSI-based coarsening scenario@3,4,8# assumes that the frac
tal dimension of the cluster remains constant on a shrink
interval of distances between the lower cutoffl (t) ~the coars-
ening length!, and an upper cutoffL̃(t). Now, the perimeter
L and areaA of the FC can be estimated as@2#

L; l ~ L̃/ l !D and A; l 2~ L̃/ l !D, ~17!

respectively. Area conservation yieldsL̃; l (D22)/D

;t2(22D)/2D ~the characteristic radius of the FC decreas
with time! @4,8#. This followsL(t); l 21(t);t21/2. One can
also predict the asymptotic shape of the equal-time pair c
relation function at large times:C(r ,t)→g@r / l (t)#. At dis-
7-3
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AVNER PELEG, MASSIMO CONTI, AND BARUCH MEERSON PHYSICAL REVIEW E64 036127
tancesr ! l (t) from a typical reference point inside the clu
ter the correlation function should obey the Porod la
g(j)512kj with a constantk of order unity. At l (t)!r

!L̃(t) we haveg(j);jD22 ~see Ref.@8#!, a power-law tail
with the same exponent as inC(r ,t50). Finally, the dura-
tion of the fractal coarsening stage should scale like the c
ter areaA. This estimate follows from the fact that, by th
end of this stage, the lower and upper cutoffs of the frac
cluster become comparable.

In order to check these predictions, we solved Eq.~3!
numerically on a domain 204832048 with no flux~that is,
zero normal component of¹u) at the boundary. The accu
racy of the numerical scheme was monitored by checking
~approximate! conservation law~5! which was found to hold
with an accuracy better than 0.2% fort.3.

We used ten different DLA clusters@33# as the initial con-
ditions. This choice makes it possible to compare
interface-controlled fractal coarsening with bulk-diffusio
controlled coarsening, where anomalous scaling and br
down of DSI were observed for DLA clusters@9,10#. To
prevent fragmentation at an early stage of coarsening,
clusters were reinforced by an addition of peripheral sit
similar to Ref. @5#. The average fractal dimension of the
clusters, determined from the correlation function~18!, was
1.75.

Introducing the densityr(r ,t)5(1/2)@u(r ,t)11#, we
identify the cluster as the locus wherer(r ,t)>1/2. Snap-
shots of the coarsening process are shown in Fig. 1. One
see that larger features grow at the expense of smaller o
At late times the cluster radius decreases, as predicted
DSI. The predicted ‘‘shrinking exponent’’ (D22)/(2D)
.20.07 is too small to be measured accurately. A sim
decrease of the cluster size is evident in the pictures obta
in kinetic Monte Carlo simulations of area-preservi
interface-controlled coarsening of DLA clusters@6#, although
the authors of Ref.@6# did not comment on it.

To characterize the dynamics, several quantities w

FIG. 1. Evolution of a DLA cluster undergoing an interfac
controlled coarsening in a globally conserved system. The up
row corresponds tot50 ~left! and 12.6~right!, the lower row tot
5126.4~left! and 1856.6~right!.
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sampled and averaged over the ten initial conditions:
~1! The cluster area.
~2! The~circularly averaged! correlation function, normal-

ized atr 50.

C~r ,t !5
^r~r 81r ,t !r~r 8,t !&

^r2~r 8,t !&
. ~18!

~3! The coarsening length scalel (t), computed from
equationC( l ,t)51/2.

~4! The cluster perimeterL(t) computed by a standar
algorithm @34#.

The cluster area was found to be constant with an ac
racy better than 0.5% fort.10, and better than 0.15% fo
t.100. Hence, area preserving motion by curvature,
~16!, provides an accurate description to this regime. Fig
2 shows that, at late times (t.100), C(r ,t) approaches a
scaled form. The scaled function has a long-range power-
tail with an exponentD22 ~the same as in the initial condi
tion!, see the inset of Fig. 2. Noticeable is the absence of
additional dynamic length scales, in a striking contrast to
locally conserved fractal coarsening@10#. The dynamics of
l (t) is shown in Fig. 3 together with the puret1/2 power-law
line ~serving as a reference for the expected late-time beh
ior! and a corrected power-law fitl (t)5 l 01bta with a
50.49, b51.2 andl 055.0.

Figure 3 shows that convergence ofl (t) to scaling is rela-
tively slow in comparison with the cases of critical and o
critical quench@32#. Therefore we show, in Fig. 4, a differen
method@35# of determining the dynamic exponent, suitab
for a slow convergence. In this method one defines a~time-
dependent! effective exponent:a0(t)5d ln l(t)/d ln t. Under
the normal scaling assumption, one can determine the ‘‘tr
dynamic exponent by plottinga0(t) vs l 21(t) and extrapo-
lating it to t→`, that is tol 21(t)→0, where corrections to
scaling due to subleading terms are negligible. The value

er
FIG. 2. Scaling form of the correlation functionC(r ,t) for time

momentst5400.0, 587.0, 1264.8 and 1856.6. The inset shows
same data on a log-log plot. The solid line, serving as a refere
represents a power-law with an exponentD22520.25.
7-4
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NORMAL SCALING IN GLOBALLY CONSERVED . . . PHYSICAL REVIEW E64 036127
a0(t) are computed froma0(t)5 log10@ l (10t)/ l (t)#. This
procedure yieldsa50.50, that isl (t) exhibits normal scal-
ing.

The same procedures were used for an analysis of
dynamic behavior of the cluster perimeterL(t). We found
the same normal scaling:L21(t);t1/2. Irisawaet al. @6# re-
ported an exponent 0.38 forL21(t) in their kinetic Monte
Carlo simulations. Their graph shows, however, an incre
of the effective exponent at late times. We believe tha
careful analysis of their data would also lead to an expon
of 1/2.

Thus, all predictions following from the DSI hypothesi
the normal scaling ofl (t), a decrease of the characteris
radius of the FC with time and scaling behavior of the c
relation function~including its power-law tail!, are confirmed
by numerical simulations. We therefore conclude that g
bally conserved interface-controlled coarsening of DLA clu
ters exhibits DSI and normal scaling. This behavior stand
contrast to the breakdown of scale invariance observe
diffusion-controlled coarsening of DLA clusters@9,10#,
where the order parameter was conservedlocally. The
mechanism of scaling violations in locally conserved s
tems is not known at present, therefore a comparison

FIG. 3. The coarsening lengthl (t) vs time ~circles!. The solid
line is a corrected power-law fit:l (t)5 l 01bta with a50.49, l 0

55.0, andb51.2. The dotted line represents a puret1/2 power law.
.
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tween the two systems is instructive. We notice that glo
transport, characteristic for interface-controlled systems
uninhibited by Laplacian screening effects typical for loca
conserved systems. In other words, large-scale dynamic
not suppressed in globally conserved systems, in contra
locally conserved ones. This difference is observed alre
in a simpler setting of an area-preserving relaxation of a lo
slender bar. In the locally conserved case the bar acquir
dumbbell shape, while its initial width remains~almost! con-
stant and represents a relevant length scale until late ti
@10#. On the contrary, in the globally conserved case a
develops a fingerlike shape, and its dimensions are chan
on the same time scale@36#.

We should emphasize that at present we are not awar
any experiment where interface-controlled coarsening
fractal clusterswas observed. By contrast, there are ma
experimental situations where coarsening of fractal clus
occurs in locally conserved~bulk diffusion-controlled! sys-
tems@9#. Our choice of the initial conditions has enabled
to investigate fractal coarsening in a conserved system
without the Laplacian screening effects. This helped us
single out the reason for scaling violations observed in
fractal coarsening of locally conserved systems.

We are very grateful to Arkady Vilenkin for useful discu
sions of the sublimation/deposition dynamics. We also tha
Azi Lipshtat for help. This work was supported in part by
grant from the Israel Science Foundation, administered
the Israel Academy of Sciences and Humanities.

FIG. 4. The time-dependent effective dynamic exponenta0(t)
versus 1/l (t). The solid line is a linear fit.
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